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1 Expansion in Spherical Harmonics

Begin with the known form of electric potential for point charges.
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Expand into spherical harmonics using equation 3.70.
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We know that m=0 by azimutal symmetry of the source distribution
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Useful identities for these spherical harmonics:
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Substituting the above identities,
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2 Limit of a Dipole

Simply taking the limit as a — 0 will represent putting two point charges directly on top of each other.
We already know the potential of that configuration. Instead, we will keep the product [ga] constant. In

this limit, it only makes sense to treat the case [r > a]
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We want to keep the product ga constant, so we have to factor an a outside the sum.
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Put in the dipole definition
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In the limit as a — 0, all term in the sum also approach zero except the [ = 0 term.
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3 Enclosing the dipole in a grounded sphere
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We are now imposing the condition that the potential must be zero on the surface of a sphere. We know
the general form of the solution for potential inside a sphere with a known potential, so we will use it to

perfectly cancel the potential that would have otherwise been induced by the dipole.
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Because we can’t have the potential blowing up at the origin,
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We are going to add these two solutions so that the boundary condition on the sphere is met,
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To make the algebra a little easier, I'll redefine theD;’s as A;’s.
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Now I'll apply the boundary condition at the surface of the sphere.
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We know that the P;’s are orthogonal so,

So we’ve now found all the of A;’s of which only one is non zero.

Putting it all back together,
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