J.D. Jackson Problem 3.6

Josh Orndorff admin@joshorndorff.com

March 20, 2012

1 Expansion in Spherical Harmonics

Begin with the known form of electric potential for point charges.

$$\Phi = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{a}|} - \frac{1}{|\mathbf{r} + \mathbf{a}|} \right) \tag{1}$$

Expand into spherical harmonics using equation 3.70.

$$\Phi = \frac{q}{\epsilon_0} \sum_{l,m} \left[\frac{1}{2l+1} \frac{r_{<}^l}{r_{>}^{l+1}} Y_l m^*(0, \phi') Y_l m(\theta, \phi) - \frac{1}{2l+1} \frac{r_{<}^l}{r_{>}^{l+1}} Y_l m^*(\pi, \phi') Y_l m(\theta, \phi) \right]$$
(2)

$$\Phi = \frac{q}{\epsilon_0} \sum_{l,m} \frac{r_{\leq}^l Y_{lm}(\theta, \phi)}{r_{>}^{l+1} (2l+1)} \left[Y_{lm}^*(0, \phi') - Y_{lm}^*(\pi, \phi') \right]$$
(3)

We know that m=0 by azimutal symmetry of the source distribution

$$\Phi = \frac{q}{\epsilon_0} \sum_{l,m} \frac{r_{<}^l Y_{l0}^*(\theta,\phi)}{r_{>}^{l+1}(2l+1)} \left[Y_{l0}^*(0,\phi') - Y_{l0}^*(\pi,\phi') \right] \tag{4}$$

Useful identities for these spherical harmonics:

$$Y_{l0}^{*}(0,\phi') = Y_{l0}(0,\phi') = \sqrt{\frac{2l+1}{4\pi}} P_{l}(\cos 0) = \sqrt{\frac{2l+1}{4\pi}}$$
(5a)

$$Y_{l0}^{*}(\pi, \phi') = Y_{l0}(\pi, \phi') = \sqrt{\frac{2l+1}{4\pi}} P_{l}(\cos \pi) = \sqrt{\frac{2l+1}{4\pi}} (-1)^{l}$$
(5b)

$$Y_{l0}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos\theta)$$
 (5c)

Substituting the above identities,

$$\Phi = \frac{q}{\epsilon_0} \sum_{l=0}^{\infty} \frac{r_{<}^l}{r_{>}^{l+1}(2l+1)} \sqrt{\frac{2l+1}{4\pi}}^2 P_l(\cos\theta) \left[1 - (-1)^l\right]$$
 (6)

$$\Phi = \frac{q}{2\pi\epsilon_0} \sum_{l-odd} \frac{r_{<}^l}{r_{>}^{l+1}} P_l(\cos\theta)$$
(7)

2 Limit of a Dipole

Simply taking the limit as $a \to 0$ will represent putting two point charges directly on top of each other. We already know the potential of that configuration. Instead, we will keep the product [qa] constant. In this limit, it only makes sense to treat the case [r > a]

$$\Phi = \frac{q}{2\pi\epsilon_0} \sum_{lodd} \frac{a^l}{r^{l+1}} P_l(\cos\theta)$$
 (8)

We want to keep the product qa constant, so we have to factor an a outside the sum.

$$\Phi = \frac{qa}{2\pi\epsilon_0} \sum_{lodd} \frac{a^{l-1}}{r^{l+1}} P_l(\cos\theta)$$
(9)

Put in the dipole definition

$$\Phi = \frac{p}{4\pi\epsilon_0} \sum_{lodd} \frac{a^{l-1}}{r^{l+1}} P_l(\cos\theta)$$
 (10)

In the limit as $a \to 0$, all term in the sum also approach zero except the l = 0 term.

$$\lim_{a \to 0} \Phi = \frac{p}{4\pi\epsilon_0 r^2} P_1(\cos \theta) \tag{11}$$

$$\lim_{a \to 0} \Phi = \frac{p \cos \theta}{4\pi\epsilon_0 r^2} \tag{12}$$

3 Enclosing the dipole in a grounded sphere

We are now imposing the condition that the potential must be zero on the surface of a sphere. We know the general form of the solution for potential inside a sphere with a known potential, so we will use it to perfectly cancel the potential that would have otherwise been induced by the dipole.

$$\Phi_h = \sum_{l} [D_l r^l + B_l R^{-l-1} P_l(\cos \theta)$$
(13)

Because we can't have the potential blowing up at the origin,

$$\Phi_h = \sum_l D_l r^l P_l(\cos \theta) \tag{14}$$

We are going to add these two solutions so that the boundary condition on the sphere is met,

$$\Phi_{total} = \Phi_h + \Phi_{dip} = \sum_{l} D_l r^l P_l(\cos \theta) + \frac{p}{4\pi\epsilon_0} P_1(\cos(\theta))$$
(15)

To make the algebra a little easier, I'll redefine the D_l 's as A_l 's.

$$\Phi_{total} = \frac{p}{4\pi\epsilon_0} \left[\sum_{l} -A_l r^l P_l(\cos\theta) + \frac{1}{r^2} P_1(\cos\theta) \right]$$
(16)

Now I'll apply the boundary condition at the surface of the sphere.

$$\Phi_{total}(b,\theta) = 0 = \sum_{l} -A_l b^l P_l(\cos\theta) + \frac{1}{b^2} P_1(\cos\theta)$$
(17)

$$\sum_{l} A_l b^{l+2} P_l(\cos \theta) = P_1(\cos \theta) \tag{18}$$

We know that the P_l 's are orthogonal so,

$$A_1 b^3 P_1(\cos \theta) = P_1(\cos \theta) \tag{19}$$

So we've now found all the of A_l 's of which only one is non zero.

$$A_1 = \frac{1}{b^3} \tag{20}$$

Putting it all back together,

$$\Phi_{total} = \frac{p\cos\theta}{4\pi\epsilon_0} \left[\frac{1}{r^2} - \frac{r}{b^3} \right]$$
 (21)